Computing with Polynomials Given By Black Boxes for Their Evaluation: Greatest Common Divisors, Factorization, Separation of Numerators and Denominators

نویسندگان

  • Erich Kaltofen
  • Barry M. Trager
چکیده

Algorithms are developed that adopt a novel implicit representation for multivariate polynomials and rational functions with rational coefficients, that of black boxes for their evaluation. We show that within this representation the polynomial greatest common divisor and factorization problems, as well as the problem of extracting the numerator and denominator of a rational function, can all be solved in random polynomial-time. Since we can convert black boxes efficiently to sparse format, problems with sparse solutions, e.g., sparse polynomial factorization and sparse multivariate rational function interpolation, are also in random polynomial time. Moreover, the black box representation is one of the most space efficient implicit representations that we know. Therefore, the output programs can be easily distributed over a network of processors for further manipulation, such as sparse interpolation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization of Polynomials and GCD Computations for Finding Universal Denominators

We discuss the algorithms which, given a linear difference equation with rational function coefficients over a field k of characteristic 0, compute a polynomial U(x) ∈ k[x] (a universal denominator) such that the denominator of each of rational solutions (if exist) of the given equation divides U(x). We consider two types of such algorithms. One of them is based on constructing a set of irreduc...

متن کامل

On the Complexity of Noncommutative Polynomial Factorization

In this paper we study the complexity of factorization of polynomials in the free noncommutative ring F〈x1, x2, . . . , xn〉 of polynomials over the field F and noncommuting variables x1, x2, . . . , xn. Our main results are the following: • Although F〈x1, . . . , xn〉 is not a unique factorization ring, we note that variabledisjoint factorization in F〈x1, . . . , xn〉 has the uniqueness property....

متن کامل

Algebraic Algorithms

This is a preliminary version of a Chapter on Algebraic Algorithms in the upcoming Computing Handbook Set Computer Science (Volume I), CRCPress/Taylor and Francis Group. Algebraic algorithms deal with numbers, vectors, matrices, polynomials, formal power series, exponential and differential polynomials, rational functions, algebraic sets, curves and surfaces. In this vast area, manipulation wit...

متن کامل

Factorization of Polynomials in One Variable over the Tropical Semiring

We show factorization of polynomials in one variable over the tropical semiring is in general NP-complete, either if all coefficients are finite, or if all are either 0 or infinity (Boolean case). We give algorithms for the factorization problem which are not polynomial time in the degree, but are polynomial time for polynomials of fixed degree. For two-variable polynomials we derive an irreduc...

متن کامل

Analytical Results for Dimensionally Regularized Massless On-shell Double Boxes with Arbitrary Indices and Numerators

We present an algorithm for the analytical evaluation of dimensionally regularized massless on-shell double box Feynman diagrams with arbitrary polynomials in numerators and general integer powers of propagators. Recurrence relations following from integration by parts are solved explicitly and any given double box diagram is expressed as a linear combination of two master double boxes and a fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 1988